
EVOLVING METAPARAMETERS OF DEEP Q-LEARNING AGENTS IN A PREDATOR/PREY
AGENT-BASED MODEL

Leif Rasmussen & Can Gurkan

Department of Computer Science
Northwestern University

ABSTRACT

Multi-agent reinforcement learning systems have garnered
attention recently and have been used to solve difficult prob-
lems in various settings, such as Atari games and Go [1, 2, 3].
In this study, we have explored an evolutionary multi-agent
system with Q-learning agents. We developed a predator/prey
agent-based model where each agent has a deep Q-learning
network. The network meta-parameters are evolved from
generation to generation based on how well each agent learns
to perform in its lifetime. We found that the predator and
prey agents evolved different network structures and learning
parameters in this specific setting. It appears that prey agents
benefit from larger networks compared to the predator agents.

1. INTRODUCTION AND PROBLEM DESCRIPTION

Evolution is the only process that has been able to success-
fully produce general intelligence. An essential feature of
evolutionary processes is that they act on agents that are em-
bedded in dynamic environments. In such environments the
fitness of agents is determined by their ability to interact with
both the static elements of the environment as well as other
agents upon which evolutionary processes are concurrently
acting. In this study, we have embedded artificial neural net-
works into agents that are themselves embedded into environ-
ments in which they interact with other agents in a compet-
itive way and replicate differentially based on some criteria
of success. The agents gain lifetime learning using reinforce-
ment learning. Additionally, evolutionary processes that help
shape the meta-parameters of their artificial neural networks
from generation to generation. We impose a fitness cost on
the agents corresponding to the size of their artificial neural
networks to gain insights about trade-offs between complex-
ity and performance. Ultimately, we aim to arrive at a set
of techniques for designing evolutionary learning agents that
can be used to explore the evolution of intelligence as well as
the space of potential behavioral equilibria in different game
theoretic scenarios that are not mathematically or computa-
tionally tractable.

leif@rasmussen.com & gurkan@u.northwestern.edu

2. RELATED STUDIES

Previous work in multi-agent reinforcement learning begins
with using self-play strategies in mastering games like Go,
chess and shogi [3] as well as in learning to play two player
video games [1, 2]. Other more relevant work involves inves-
tigating reinforcement learning agents in a multi-agent set-
ting [4]. Previous work regarding the evolutionary aspect of
this study includes growing Artificial Neural Networks using
genetic algorithms [5], and training neural networks using ge-
netic algorithms [6].

3. INTELLECTUAL CONTRIBUTION

Both multi-agent reinforcement learning systems and evo-
lutionary neural nets were studied previously as mentioned
above, but as far as we know, studies that combine the two
areas are relatively few. We believe the techniques we de-
velop during the course of this research have the potential
to be used in many domains. The study of complex sys-
tems involving adaptive agents spans a number of different
academic disciplines. Efficient techniques for developing
learning agents will be useful in understanding the nature
of intelligence as well as creating computational models of
economic processes, socio-cultural processes, ecological pro-
cesses, etc. Furthermore, these techniques may also be used
to create agents capable of practical tasks by having them
play/compete in simulations with other learning agents.

4. DESCRIPTION OF THE MULTI-AGENT SYSTEM
AND LEARNING

4.1. Multi-agent Model

For this work, we built a simple predator/prey model in
which members of the predator species (hawks) survive dif-
ferentially based on their ability to capture members of a
prey species (mice) which in turn will survive based on their
ability to evade predators. Both the predator and prey agents
use deep Q-learning to approximate state-action-values and
determine their actions. The agents have partial observability
of their environments. Thus the input state is a real-valued



vector of length 26 which captures the scaled distance of
the prey and predator agents within twelve cones with 30-
degrees of vision fanning out 360 degrees around the agent.
Each cone identifies if there are any predator or prey agents in
the 30-degree cone segment of radius r. The actions available
to the agents in each state are turning by 20 degrees to the left
or to the right or moving forward in the model by 0.1 of a unit.

Fig. 1. The multi-agent reinforcement learning framework
used in our model.

4.2. Q-learning

Using Q-learning we try to find a state-action value function
for each agent which gives us a value for performing each ac-
tion in the set of possible actions available to the agent given
a state. The agent’s policy is then determined by choosing an
action in a given state based on the values of the state-action
function. We train a deep Q-network (DQN) to approximate
the state-action value function by passing reward signals as-
sociated with the actions in the agent’s environment into the
deep learning model. Catching a prey for a predator consti-
tutes a +1 reward, while getting caught by a predator for the
prey constitutes a -1 reward. We use stochastic batch gradient
descent to nudge our deep neural net toward approximating a
good state-action function for the agent to use to make deci-
sions in the model. We keep track of the state-action-reward
transitions made by the agent in each time step. We then use
the following as our target Q (state-action function),

Qtarget(slast, alast) = R+ γmax
a∈A

Qactual(scurrent, a).

4.3. Evolution of metaparameters

A set of predator and prey agents each initialized with Deep
Q-Networks (DQNs) with randomized meta-parameters and
randomized weights are generated at the start. The meta
parameters are as follows: number of layers in the DQN
(bound between 2 and 7,) and the number of nodes in each
layer (between 4 and 136, discounting rate, learning rate,
batch size, and epsilon (exploration v.s. exploitation) to be
optimized via evolution. These agents play a game with each

other for a certain amount of time. Predators are rewarded
positively for capturing prey and prey are negatively rewarded
for being captured respectively. Prey are spawned to random
coordinates after being captured to avoid the predators from
continuously recapturing the same prey. During this game,
agents adapt by updating the weights in their DQNs using
batch memory learning. At the end of these play rounds, the
predator and prey agents are ranked based on their point mi-
nus some cost for the number of parameters in their DQNs. A
new population is then initialized using the meta-parameters
of a predecessor with a probability proportional to the rank
of that predecessor. Random mutations are introduced to the
meta-parameters during this process, which is a model of
generational learning. Mutations are normally distributed,
so larger mutations (such as adding large layers) will be
rare compared to small mutations (such as adding an ad-
ditional unit to a layer). This process is repeated for a set
number of generations and the performance changes of the
agents in each successive round are recorded. For the sake
of computational tractability we restrict the space of possible
architectures of DQNs to prevent the number of parameters
from becoming too large-although we hope that Occam’s ra-
zor serves to push the size of the DQNs down to the minimum
functional configuration.

5. SOFTWARE

NetLogo is a programming language and development/modeling
environment for designing agent-based models [7]. We built
a NetLogo simulation of the predator/prey game. We cre-
ated a Pytorch agent class which implements q-learning and
batch memory and embedded it into NetLogo agents using
the NetLogo Python extension. In making this model we
have created a way of encoding the location of entities in the
model into one dimensional vectors.

6. RESULTS

We ran our model for 60 generations where each agent in
each generation trained for 30000 time steps. Due to the
significant computational cost of our model we weren’t able
to perform any repetitions, so the statistical significance of
our results are low. We used the same agent-based model
with agents that act completely randomly as a baseline to
compare the behavior of our learning agents with at the end
of our experiments as a sanity check. We observed some
minor qualitative differences in the behavior of the agents
after the end of training rounds. We haven’t observed any
cooperative dynamics emerge, such as flocking (for the prey)
so that they can avoid predators better, or flanking (for the
predators) so that they can corner prey. We observed how the
size of the networks, and learning parameters change over the
generations as shown below.



0 10 20 30 40 50 60
Generations

2.0

2.5

3.0

3.5

4.0

4.5

5.0

La
ye

r L
en

gt
h

Hawks
Mice

(a) Mean Layer length

0 10 20 30 40 50 60
Generations

70

80

90

100

110

120

No
de

s p
er

 L
ay

er

Hawks
Mice

(b) Nodes in Primary Layer

0 10 20 30 40 50 60
Generations

20

30

40

50

60

70

No
de

s p
er

 L
ay

er

Hawks
Mice

(c) Nodes in Secondary Layers

Fig. 2. Evolution of the Network Structure Metaparameters
over the Generations. The primary layer is the first layer of
the neural net while the secondary layers are the subsequent
layers after the first layer.

0 10 20 30 40 50 60
Generations

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Le
ar

ni
ng

 R
at

e

Hawks
Mice

(a) Mean Learning Rate

0 10 20 30 40 50 60
Generations

30

40

50

60

70

80

90

100

Ba
tc

h 
Si

ze

Hawks
Mice

(b) Mean Batch Size

0 10 20 30 40 50 60
Generations

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Sc
al

ed
 S

co
re

s

Hawks
Mice

(c) Mean Scaled Scores

0 10 20 30 40 50 60
Generations

0.95

0.96

0.97

0.98

0.99

1.00

Di
sc

ou
nt

 Fa
ct

or

Hawks
Mice

(d) Mean Discount Factor

Fig. 3. Evolution of the Learning Metaparameters over the
Generations.

7. DISCUSSION

As can be seen in Figures 2 and 3 above, The predator agents
(depicted in Blue) seem to evolve smaller neural networks

compared to the prey agents (depicted in orange). The num-
ber of nodes per layer are fairly similar in both species, but
the prey agents have longer networks. This indicates that the
predator agents don’t receive a large enough advantage from
having large networks compared to the prey agents. We can
observe that the prey agents also prefer a larger batch size
which means that they sample a larger number of state, action,
reward memories at each time step. This is likely needed due
to the larger brains that they have. The predator agents have
evolved lower discount factors which makes them value only
more imminent rewards, this could be interpreted as a more
instinctive behavior. The prey agents evolved discount factor
close to 1, which indicates that they are more future oriented.
Both of the types of agents seem to prefer low learning rates
but the prey evolved slightly lower learning rates compared
to predators which indicates that they prefer to not learn new
knowledge, which makes sense since the environment is fairly
stable.

8. CONCLUSION AND FUTURE WORK

In conclusion, we observed that the different species in our
predator/prey model evolved different network structures and
learning parameters suggesting that the prey species had more
to gain from having more cognitive functionality compared to
the predators. We hope to use some portion of the software
we developed and some of the experimental techniques in this
project in our future research. We aim to put q-learning agents
in more complex environments with larger state and action
spaces and with less computationally tractable equilibria. In
the future we would also like to use more computing power
to conduct a wider range of experiments and get more robust
results.



9. REFERENCES

[1] Adrià Puigdomènech Badia, Bilal Piot, Steven Kaptur-
owski, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo,
and Charles Blundell, “Agent57: Outperforming the atari
human benchmark,” 2020.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller, “Playing atari with deep reinforce-
ment learning,” 2013.

[3] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanc-
tot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hass-
abis, “Mastering chess and shogi by self-play with a gen-
eral reinforcement learning algorithm,” 2017.

[4] Peter Sunehag, Guy Lever, Siqi Liu, Josh Merel, Nicolas
Heess, Joel Z. Leibo, Edward Hughes, Tom Eccles, and
Thore Graepel, “Reinforcement learning agents acquire
flocking and symbiotic behaviour in simulated ecosys-
tems,” Artificial Life Conference Proceedings, , no. 31,
pp. 103–110, 2019.

[5] Kenneth O. Stanley and Risto Miikkulainen, “Evolving
neural networks through augmenting topologies,” Evolu-
tionary Computation, vol. 10, no. 2, pp. 99–127, 2002.

[6] Felipe Petroski Such, Vashisht Madhavan, Edoardo
Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune,
“Deep neuroevolution: Genetic algorithms are a compet-
itive alternative for training deep neural networks for re-
inforcement learning,” 2018.

[7] Uri Wilensky, “NetLogo,”
http://ccl.northwestern.edu/netlogo/, Northwestern
University, Evanston, IL, 1999.


